English
English
Français
日本語
Deutsch
tiếng Việt
Italiano
Nederlands
ภาษาไทย
Polski
한국어
Svenska
magyar
Malay
বাংলা ভাষার
Dansk
Suomi
हिन्दी
Pilipino
Türkçe
Gaeilge
العربية
Indonesia
Norsk
تمل
český
ελληνικά
український
Javanese
فارسی
தமிழ்
తెలుగు
नेपाली
Burmese
български
ລາວ
Latine
Қазақша
Euskal
Azərbaycan
Slovenský jazyk
Македонски
Lietuvos
Eesti Keel
Română
Slovenski
मराठी
Srpski језик
Español
Português2024-09-26

Static Power Rotary Tool Holders can machine different materials, such as:
Some of the advantages of using Static Power Rotary Tool Holders include:
When choosing Static Power Rotary Tool Holders, it is important to consider the following factors:
In conclusion, Static Power Rotary Tool Holders are a versatile tool for machining a variety of materials. By selecting the appropriate tool holder, manufacturers can improve efficiency, reduce manufacturing costs, and produce high-quality products.
Foshan Jingfusi CNC Machine Tools Company Limited is a leading manufacturer of Static Power Rotary Tool Holders and other CNC machine tools. We specialize in the design, development, and production of high-precision machine tools for a wide range of industries. Our products are backed by excellent customer service and technical support. For inquiries, please contact us at manager@jfscnc.com
1. Li, X., & Dong, S. (2015). Dynamic characteristics of spindle system and bearing preload optimization of high-speed milling machine tools. Journal of Mechanical Science and Technology, 29(9), 4025-4032.
2. Chen, H., Hu, L., Gao, J., & Li, Y. (2020). Development of a high-speed precision micro milling machine. International Journal of Advanced Manufacturing Technology, 107(1-2), 571-580.
3. Liu, X., Liu, X., Wang, W., Wang, Y., Hou, Z., & Zhang, J. (2019). Development of a laser assisted milling system for difficult-to-machine materials. Applied Sciences, 9(13), 2737.
4. Shen, Y., Mao, R., Liu, J., & Huang, H. (2018). Surface modeling and machining quality optimization of ball-end milling for curved surface parts. International Journal of Advanced Manufacturing Technology, 97(5-8), 1909-1921.
5. Wang, Y., Li, Y., Li, B., Mao, X., Wang, C., & Jiang, L. (2020). Influence of cutting parameters on the surface roughness in high-speed milling of Inconel 718. Materials, 13(17), 3688.
6. Zhang, P., Zhang, W., Cai, H., Xia, H., & Huang, H. (2019). Calibration of spindle thermal deformation error based on indirect measurement of multi-point displacement. The International Journal of Advanced Manufacturing Technology, 103(1-4), 995-1009.
7. Huang, Y., Li, W., & Zhu, Z. (2016). Influence of tool path strategies on microstructure and mechanical properties of a Ti–6Al–4V alloy produced by 3D laser assisted milling. Journal of Materials Research and Technology, 5(2), 103-115.
8. Yang, Y., Nie, H., Zhang, X., & Qin, Y. (2015). Surface integrity and energy consumption in high-speed milling of titanium alloy with coated carbide tools. Transactions of Nonferrous Metals Society of China, 25(11), 3736-3743.
9. Salimi, M., Sajjadi, S. A., & Sajjadi, S. A. (2018). Optimization of cutting parameters to improve surface roughness in high-speed face milling of 7050-T7451 aluminum alloy using response surface methodology and genetic algorithm. Journal of Materials Research and Technology, 7(4), 473-481.
10. Lv, Y., Peng, Y., Lai, X., & Tang, L. (2017). Wear and deformation of micro-textured tools in micro-milling of Ti-6Al-4V. Journal of Materials Engineering and Performance, 26(12), 5785-5793.